Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drugs Real World Outcomes ; 10(2): 291-298, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36840826

RESUMO

BACKGROUND: Psoriasis imposes a substantial burden on patients' social, emotional, physical, and family life. Although psoriasis has no complete cure, various treatments are available to control its symptoms and improve a patients' quality of life. OBJECTIVE: We aimed to compare the effectiveness of biologic versus non-biologic treatments on health-related quality of life among patients with psoriasis in Malaysia. METHODS: This retrospective cross-sectional study evaluated data of adult patients diagnosed with psoriasis during 2007-18 from the Malaysian Psoriasis Registry. Baseline demographics, disease, and treatment characteristics were described. For a subset of patients treated with biologics and non-biologics who had baseline and 6-month follow-up data available, changes in the mean Dermatology Life Quality Index scores and the proportion of patients with a clinically relevant improvement (≥ 4 points) post-treatment were assessed. RESULTS: Overall, 15,238 adult patients with psoriasis from the Malaysian Psoriasis Registry were included in the analysis. Patients receiving biologics showed a statistically significant reduction in the mean Dermatology Life Quality Index scores after 6 months compared with those receiving non-biologic treatment (- 5.7 vs - 0.8%; p < 0.001). The proportion of patients who achieved a ≥ 4-point improvement in Dermatology Life Quality Index scores was approximately two times greater in the biologic-treated group versus the non-biologic-treated group (56.4 vs 27.7%). CONCLUSIONS: Biologic treatment showed a greater reduction in the Dermatology Life Quality Index scores of patients with psoriasis versus non-biologic treatment. These results highlight the importance of early treatment with more efficacious treatment options, such as biologic therapies, to improve the overall health-related quality of life of patients with psoriasis.

2.
Biology (Basel) ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466836

RESUMO

Exosomes are cell-derived nanovesicles, and lately, cancer-derived exosomes have been reported to carry KRAS protein, which contributes to the malignancy of many cancers. In this study, farnesylthiosalicylic acid (FTS) was used to inhibit the activities of mutated KRAS in colon cancer SW480 cells to discover the potential link between KRAS activities and cancer-derived exosomes. We observed that FTS inhibits KRAS activity in SW480 cells, but promotes their exosome production. When the exosomal proteins of SW480 cells were profiled, a total of 435 proteins were identified with 16 of them showing significant changes (greater than or equal to two-fold) in response to FTS treatment. Protein network analysis suggests KRAS inhibition may trigger stress in the cells. In addition, a high level of acetyl-coA synthetase family member 4 protein which plays an important role in colon cancer survival was identified in the exosomes secreted by FTS-treated SW480 cells. The uptake of these exosomes suppresses the growth of some cell types, but in general exosomes from FTS-treated cells enhance the recipient cell survival when compared to that of untreated cells. Together our findings suggest that FTS may trigger stress in SW480 cells, and induce more exosomes secretion as the survival messenger to mitigate the impact of KRAS inhibition in colon cancer cells.

3.
ScientificWorldJournal ; 2014: 698178, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25162061

RESUMO

The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.


Assuntos
Actinobacteria/metabolismo , Anti-Infecciosos/farmacologia , Biodiversidade , Sedimentos Geológicos/microbiologia , Áreas Alagadas , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , Bactérias/efeitos dos fármacos , Descoberta de Drogas , Malásia , Testes de Sensibilidade Microbiana , Filogenia
4.
Int J Syst Evol Microbiol ; 64(Pt 9): 3297-3306, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24994773

RESUMO

Two novel actinobacteria, strains MUSC 135(T) and MUSC 137, were isolated from mangrove soil at Tanjung Lumpur, Malaysia. The 16S rRNA gene sequence similarity and DNA-DNA relatedness between strains MUSC 135(T) and MUSC 137 were 100 % and 83±3.2 %, confirming that these two strains should be classified in the same species. Strain MUSC 135(T) exhibited a broad-spectrum bacteriocin against the pathogens meticillin-resistant Staphylococcus aureus (MRSA) strain ATCC BAA-44, Salmonella typhi ATCC 19430(T) and Aeromonas hydrophila ATCC 7966(T). A polyphasic approach was used to study the taxonomy of MUSC 135(T), and it showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The diamino acid of the cell-wall peptidoglycan was ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H4) and MK-9(H8). Polar lipids detected were a lipid, an aminolipid, a phospholipid, phosphatidylinositol, phosphatidylethanolamine and two glycolipids. The predominant cellular fatty acids (>10.0 %) were anteiso-C15 : 0 (20.8 %), iso-C16 : 0 (18.0 %), iso-C15 : 0 (12.2 %) and anteiso-C17 : 0 (11.6 %). The whole-cell sugars were ribose, glucose and mannose. These results suggested that MUSC 135(T) should be placed within the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequence exhibited that the most closely related strains were Streptomyces cinereospinus NBRC 15397(T) (99.18 % similarity), Streptomyces mexicanus NBRC 100915(T) (99.17 %) and Streptomyces coeruleofuscus NBRC 12757(T) (98.97 %). DNA-DNA relatedness between MUSC 135(T) and closely related type strains ranged from 26.3±2.1 to 49.6±2.5 %. BOX-PCR fingerprint comparisons showed that MUSC 135(T) exhibited a unique DNA profile. The DNA G+C content determined was 70.7±0.3 mol%. Based on our polyphasic study of MUSC 135(T), the strain merits assignment to a novel species, for which the name Streptomyces pluripotens sp. nov. is proposed. The type strain is MUSC 135(T) ( = MCCC 1K00252(T) = DSM 42140(T)).


Assuntos
Antibiose , Bacteriocinas/biossíntese , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/metabolismo , Avicennia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Malásia , Staphylococcus aureus Resistente à Meticilina , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética , Streptomyces/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Int J Syst Evol Microbiol ; 64(Pt 10): 3513-3519, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056298

RESUMO

Strain MUSC 115(T) was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115(T) was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium. The cell-wall peptidoglycan was of type B2ß, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15:0 and anteiso-C17:0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115(T) showed the highest sequence similarity to Microbacterium immunditiarum SK 18(T) (98.1%), M. ulmi XIL02(T) (97.8%) and M. arborescens DSM 20754(T) (97.5%) and lower sequence similarity to strains of other species of the genus Microbacterium. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 24%) between strain MUSC 115(T) and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115(T) represented a unique DNA profile. The DNA G+C content determined was 70.9 ± 0.7 mol%, which is lower than that of M. immunditiarum SK 18(T). Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115(T) ( = MCCC 1K00251(T) = DSM 28240(T) = NBRC 110089(T)).


Assuntos
Actinomycetales/classificação , Avicennia/microbiologia , Filogenia , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Florestas , Glicolipídeos/química , Malásia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
6.
Int J Syst Evol Microbiol ; 64(Pt 4): 1194-1201, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24408529

RESUMO

A novel bacterium, strain MUSC 273(T), was isolated from mangrove sediments of the Tanjung Lumpur river in the state of Pahang in peninsular Malaysia. The bacterium was yellow-pigmented, Gram-negative, rod-shaped and non-spore-forming. The taxonomy of strain MUSC 273(T) was studied by a polyphasic approach and the organism showed a range of phenotypic and chemotaxonomic properties consistent with those of the genus Novosphingobium. The 16S rRNA gene sequence of strain MUSC 273(T) showed the highest sequence similarity to those of Novosphingobium indicum H25(T) (96.8 %), N. naphthalenivorans TUT562(T) (96.4 %) and N. soli CC-TPE-1(T) (95.9 %) and lower sequence similarity to members of all other species of the genus Novosphingobium. Furthermore, in phylogenetic analyses based on the 16S rRNA gene sequence, strain MUSC 273(T) formed a distinct cluster with members of the genus Novosphingobium. DNA-DNA relatedness of strain MUSC 273(T) to the type strains of the most closely related species, N. indicum MCCC 1A01080(T) and N. naphthalenivorans DSM 18518(T), was 29.2 % (reciprocal 31.0 %) and 17 % (reciprocal 18 %), respectively. The major respiratory quinone was ubiquinone Q-10, the major polyamine was spermidine and the DNA G+C content was 63.3±0.1 mol%. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine and sphingoglycolipid. The major fatty acids were C18 : 1ω7c, C17 : 1ω6c, C16 : 0, C15 : 0 2-OH and C16 : 1ω7c. Comparison of BOX-PCR fingerprints indicated that strain MUSC 273(T) represented a unique DNA profile. The combined genotypic and phenotypic data showed that strain MUSC 273(T) represents a novel species of the genus Novosphingobium, for which the name Novosphingobium malaysiense sp. nov. is proposed. The type strain is MUSC 273(T) ( = DSM 27798(T) = MCCC 1A00645(T) = NBRC 109947(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Sphingomonadaceae/classificação , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Malásia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...